Online resit exam — Functional Analysis (WBMA033-05)

Wednesday 23 June 2021, 8.30h–11.30h CEST (plus 30 minutes for uploading)
University of Groningen

Instructions

- 1. Only references to the lecture notes and slides are allowed. References to other sources are *not* allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.
- 4. Write both your name and student number on the answer sheets!
- 5. This exam comes in two versions. Both versions consist of five problems of equal difficulty.

Make version 1 if your student number is odd.

Make version 2 if your student number is even.

For example, if your student number is 1277456, which is even, then you have to make version 2.

6. Please submit your work as a single PDF file.

Version 1 (for odd student numbers)

Problem 1 (5 + 10 = 15 points)

Consider the following linear space:

$$X = \left\{ x = (x_1, x_2, x_3, \dots) : x_k \in \mathbb{K} \text{ and } \sum_{k=1}^{\infty} 3^k |x_k| < \infty \right\}.$$

This space can be equipped with the following norms:

$$||x||_1 = \sum_{k=1}^{\infty} k^2 |x_k|$$
 and $||x||_2 = \sum_{k=1}^{\infty} 3^k |x_k|$.

- (a) Show that there exists C > 0 such that $||x||_1 \le C||x||_2$ for all $x \in X$.
- (b) Are the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ equivalent?

Problem 2 (5 + 10 + 10 = 25 points)

Let X be a Hilbert space over \mathbb{R} such that dim $X \geq 2$. Recall that the space B(X) becomes a Banach space in its own right when equipped with the operator norm. Consider the following linear operator:

$$T: B(X) \to B(X), \quad TA = A^*.$$

- (a) Compute the operator norm of T.
- (b) Assume that the vectors $e_1, e_2 \in X$ are orthonormal. Show that the linear operators $A_1, A_2 \in B(X)$ defined by

$$A_1x = 3(x, e_1)e_1 + 5(x, e_2)e_2$$
 and $A_2x = (x, e_1)e_2 - (x, e_2)e_1$.

are eigenvectors of T. What are the corresponding eigenvalues?

(c) Determine $\rho(T)$ and $\sigma(T)$ by explicitly computing $(T - \lambda)^{-1}$. Hint: for $B \in B(X)$ take the adjoint of the equation $A^* - \lambda A = B$ to get a second equation and solve for A in terms of B and λ .

Problem 3 (15 points)

Let X be a normed linear space, and assume that (x_k) is a sequence in X such that

$$\sum_{k=1}^{\infty} |f(x_k)| < \infty \quad \text{for all} \quad f \in X'.$$

Prove that

$$\sup \left\{ \sum_{k=1}^{\infty} |f(x_k)| : f \in X', \|f\| \le 1 \right\} < \infty.$$

Hint: consider the operators given by

$$T_n: X' \to \ell^1, \quad T_n f = (f(x_1), \dots, f(x_n), 0, 0, 0, \dots).$$

Problem 4 (5 + 5 + 5 + 5 + 5 = 25 points)

Let X be a Hilbert space over \mathbb{C} , and assume that $S \in B(X)$ is selfadjoint.

(a) Show that for $b \in \mathbb{R}$ we have

$$||(S - bi)x||^2 = ||Sx||^2 + b^2||x||^2$$
 for all $x \in X$.

(b) Prove that S + i is invertible.

Next, consider the operator $U = (S - i)(S + i)^{-1}$.

- (c) Show that ||Ux|| = ||x|| for all $x \in X$. Hint: observe that part (a) implies that ||(S-i)x|| = ||(S+i)x||.
- (d) Show that (Ux, Uy) = (x, y) for all $x, y \in X$.
- (e) Prove that U is unitary.

Problem 5 (10 points)

Equip the linear space $X = \mathcal{C}([0, 2\pi], \mathbb{C})$ with the following norm:

$$||f|| = \int_0^{2\pi} |f(x)| dx, \qquad f \in X.$$

Let $g(x) = \sin(x)$. Prove that there exists a functional $\varphi \in X'$ such that

$$\varphi(g) = 2 - 4i$$
 and $\|\varphi\| = \frac{\sqrt{5}}{2}$.

End of test ("version 1", 90 points)

Version 2 (for odd student numbers)

Problem 1 (5 + 10 = 15 points)

Consider the following linear space:

$$X = \left\{ x = (x_1, x_2, x_3, \dots) : x_k \in \mathbb{K} \text{ and } \sum_{k=1}^{\infty} 5^k |x_k| < \infty \right\}.$$

This space can be equipped with the following norms:

$$||x||_1 = \sum_{k=1}^{\infty} k^2 |x_k|$$
 and $||x||_2 = \sum_{k=1}^{\infty} 5^k |x_k|$.

- (a) Show that there exists C > 0 such that $||x||_1 \le C||x||_2$ for all $x \in X$.
- (b) Are the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ equivalent?

Problem 2 (5 + 10 + 10 = 25 points)

Let X be a Hilbert space over \mathbb{R} such that dim $X \geq 2$. Recall that the space B(X) becomes a Banach space in its own right when equipped with the operator norm. Consider the following linear operator:

$$T: B(X) \to B(X), \quad TA = A^*.$$

- (a) Compute the operator norm of T.
- (b) Assume that the vectors $e_1, e_2 \in X$ are orthonormal. Show that the linear operators $A_1, A_2 \in B(X)$ defined by

$$A_1x = 5(x, e_1)e_1 + 7(x, e_2)e_2$$
 and $A_2x = (x, e_1)e_2 - (x, e_2)e_1$.

are eigenvectors of T. What are the corresponding eigenvalues?

(c) Determine $\rho(T)$ and $\sigma(T)$ by explicitly computing $(T - \lambda)^{-1}$. Hint: for $B \in B(X)$ take the adjoint of the equation $A^* - \lambda A = B$ to get a second equation and solve for A in terms of B and λ .

Problem 3 (15 points)

Let X be a normed linear space, and assume that (x_k) is a sequence in X such that

$$\sum_{k=1}^{\infty} |f(x_k)| < \infty \quad \text{for all} \quad f \in X'.$$

Prove that

$$\sup \left\{ \sum_{k=1}^{\infty} |f(x_k)| : f \in X', \|f\| \le 1 \right\} < \infty.$$

Hint: consider the operators given by

$$T_n: X' \to \ell^1, \quad T_n f = (f(x_1), \dots, f(x_n), 0, 0, 0, \dots).$$

Problem 4 (5 + 5 + 5 + 5 + 5 = 25 points)

Let X be a Hilbert space over \mathbb{C} , and assume that $S \in B(X)$ is selfadjoint.

(a) Show that for $b \in \mathbb{R}$ we have

$$||(S - bi)x||^2 = ||Sx||^2 + b^2||x||^2$$
 for all $x \in X$.

(b) Prove that S + i is invertible.

Next, consider the operator $U = (S - i)(S + i)^{-1}$.

- (c) Show that ||Ux|| = ||x|| for all $x \in X$. Hint: observe that part (a) implies that ||(S-i)x|| = ||(S+i)x||.
- (d) Show that (Ux, Uy) = (x, y) for all $x, y \in X$.
- (e) Prove that U is unitary.

Problem 5 (10 points)

Equip the linear space $X = \mathcal{C}([0, 2\pi], \mathbb{C})$ with the following norm:

$$||f|| = \int_0^{2\pi} |f(x)| dx, \qquad f \in X.$$

Let $g(x) = \cos(x)$. Prove that there exists a functional $\varphi \in X'$ such that

$$\varphi(g) = -2 + 2i$$
 and $\|\varphi\| = \frac{\sqrt{2}}{2}$.

End of test ("version 2", 90 points)

Solution of problem 1 (5 + 10 = 15 points)

(a) It is obvious that $k < (\sqrt{3})^k$ for all $k \in \mathbb{N}$. Taking the square of both sides gives that $k^2 < 3^k$ for all $k \in \mathbb{N}$.

(1 point)

This implies that for all $x \in X$ we have

$$||x||_1 = \sum_{k=1}^{\infty} k^2 |x_k| \le \sum_{k=1}^{\infty} 3^k |x_k| = ||x||_2.$$

(3 points)

Therefore, we can take C = 1.

(1 point)

(b) Suppose that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent. Then there exists a constant C'>0 such that the inequality $\|x\|_2 \leq C' \|x\|_1$ holds for all $x \in X$. (3 points)

In particular, this inequality needs to hold for the vectors

$$x^n = (0, \dots, 0, 1, 0, 0, 0 \dots),$$

where the 1 is at the *n*-th entry. This implies that $3^n \leq C'n^2$ for all $n \in \mathbb{N}$, or, equivalently,

$$1 \le C' \frac{n^2}{3^n}$$
 for all $n \in \mathbb{N}$.

(3 points)

However, the right hand side tends to zero for $n \to \infty$. Therefore, such a constant C' cannot exist. We conclude that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are not equivalent.

(4 points)

Solution of problem 2 (5 + 10 + 10 = 25 points)

(a) For any $A \in B(X)$ we have that $||TA|| = ||A^*|| = ||A||$. (2 points)

This implies that the operator norm of T is given by

$$||T|| = \sup_{A \in B(X), A \neq 0} \frac{||TA||}{||A||} = 1.$$

(3 points)

(b) The assumption that e_1 and e_2 are orthonormal implies that

$$A_1e_1 = \begin{cases} 3e_1 & \text{for version 1,} \\ 5e_1 & \text{for version 2,} \end{cases} \text{ and } A_2e_1 = -e_2,$$

which implies that neither A_1 nor A_2 is the zero operator.

(2 points)

Let $u, v \in X$ be arbitrary vectors, and consider the operator $A \in B(X)$ given by Ax = (x, u)v. Then for all $x, y \in X$ we have that

$$(Ax,y) = ((x,u)v,y) = (x,u)(v,y) = (x,u)(y,v) = (x,(y,v)u) = (x,A^*y),$$

which shows that the adjoint of A given by $A^*x = (x, v)u$.

(4 points)

Since adjoints can be taken term by term, we find that by setting $u = v = e_1$ and $u = v = e_2$ that

$$A_1^*x = \begin{cases} 3(x, e_1)e_1 + 5(x, e_2)e_2 & \text{for version 1,} \\ 5(x, e_1)e_1 + 7(x, e_2)e_2 & \text{for version 2,} \end{cases}$$

which implies that $TA_1 = A_1$. Therefore, A_1 is an eigenvector of T for the eigenvalue $\lambda = 1$.

(2 points)

Likewise, by setting $u = e_2$ and $v = e_1$ (and *vice versa*) we find that

$$A_2^*x = (x, e_2)e_1 - (x, e_1)e_2,$$

which implies that $TA_2 = -A_2$. Therefore, A_2 is an eigenvector of T for the eigenvalue $\lambda = -1$.

(2 points)

(c) Let $B \in B(X)$ be arbitrary, and assume that $(T - \lambda)A = B$, or equivalently,

$$A^* - \lambda A = B$$
.

Taking the adjoint of this equation gives

$$A - \lambda A^* = B^*.$$

From the first equation we obtain that $A^* = \lambda A + B$. Substitution in the second equation gives

$$A - \lambda(\lambda A + B) = B^*.$$

(2 points)

Solving for A gives

$$A = \frac{\lambda}{1 - \lambda^2} B + \frac{1}{1 - \lambda^2} B^*,$$

(2 points)

which shows that for $\lambda \neq \pm 1$ we have that

$$(T - \lambda)^{-1} = \frac{\lambda}{1 - \lambda^2} I + \frac{1}{1 - \lambda^2} T.$$

(2 points)

Clearly, the right hand side is a linear combination of the bounded operators I and T.

(2 points)

We conclude that $\rho(T) = \mathbb{R} \setminus \{-1, 1\}$ and hence $\sigma(T) = \{-1, 1\}$.

(2 points)

Solution of problem 3 (15 points)

Define the operator

$$T: X' \to \ell^1, \quad T_n f = (f(x_1), \dots, f(x_n), \dots).$$

We claim that for all $f \in X'$ we have

$$||T_n f - Tf||_1 = \sum_{k=n+1}^{\infty} |f(x_k)| \to 0 \text{ as } n \to \infty.$$

Indeed, since the series $\sum_{k=1}^{\infty} |f(x_k)|$ converges it follows that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n, m \ge N \quad \Rightarrow \quad \sum_{k=n+1}^{m} |f(x_k)| < \varepsilon.$$

Taking $m \to \infty$ gives

$$n \ge N \quad \Rightarrow \quad \sum_{k=n+1}^{\infty} |f(x_k)| < \varepsilon.$$

which proves the claim.

(5 points)

This means that the sequence (T_n) converges pointwise to T. By a corollary of the Uniform Boundedness Principle it follows that $T \in B(X', \ell^1)$, which means that there exists a constant C > 0 such that

$$||Tf|| \le C||f||$$
 for all $f \in X'$.

(5 points)

In particular, for any $f \in X'$ with $||f|| \le 1$ it follows that

$$\sum_{k=1}^{\infty} |f(x_k)| \le C.$$

Taking the supremum over all such elements gives

$$\sup \left\{ \sum_{n=1}^{\infty} |f(x_n)| : f \in X', \|f\| \le 1 \right\} \le C < \infty.$$

(5 points)

Solution of problem 4 (5+5+5+5+5=25 points)

(a) Expanding the norm in terms of the innerproduct gives

$$||(S - bi)x||^2 = ((S - bi)x, (S - bi)x)$$

$$= (Sx, Sx) + (-bix, Sx) + (Sx, -bix) + (-bix, -bix)$$

$$= (Sx, Sx) - bi(x, Sx) + bi(Sx, x) + |bi|^2(x, x)$$

$$= ||Sx||^2 - bi(Sx, x) + bi(Sx, x) + |b|^2||x||^2$$

$$= ||Sx||^2 + |b|^2||x||^2.$$

(5 points)

(b) Method 1. Since S is selfadjoint we have that $\sigma(S) \subset \mathbb{R}$, which implies that $\mathbb{C} \setminus \mathbb{R} \subset \rho(T)$. In particular, it follows that $-i \in \rho(S)$, which means that S+i is invertible.

(5 points)

Method 2. From part (a) it follows that

$$||(S+i)x||^2 \ge ||x||^2$$
 for all $x \in X$.

The operator S is selfadjoint and thus also normal. Therefore, the inequality above implies that $-i \in \rho(S)$, which means that S+i is invertible. (5 points)

(c) Observe that part (a) implies that ||(S-i)x|| = ||(S+i)x||. This implies that

$$||Ux|| = ||(S-i)(S+i)^{-1}x|| = ||(S+i)(S+i)^{-1}x|| = ||x||.$$

(5 points)

(d) By the polarization identity and part (c) we have

$$(Ux, Uy) = \sum_{k=0}^{3} i^{k} ||U(x+i^{k}y)||^{2} = \sum_{k=0}^{3} i^{k} ||x+i^{k}y||^{2} = (x, y).$$

(e) From part (d) we obtain

$$((U^*U - I)x, y) = (U^*Ux, y) - (x, y) = (Ux, Uy) - (x, y) = 0$$
 for all $x, y \in X$.

In particular, taking $y = (U^*U - I)x$ gives

$$||(U^*U - I)x||^2 = 0 \quad \text{for all} \quad x \in X.$$

This implies that $U^*U = I$.

(4 points)

In a similar manner it is shown that $UU^* = I$. We conclude that U is unitary. (1 point)

Solution of problem 5 (10 points)

Version 1. Define the map

$$\varphi : \operatorname{span} \{g\} \to \mathbb{C}, \quad \varphi(\lambda g) = \lambda(2 - 4i).$$

With $\lambda = 1$ we have that $\varphi(g) = 4 - 2i$.

(2 points)

Since ||g|| = 4 we have that

$$\|\varphi\| = \sup_{\lambda \neq 0} \frac{|\varphi(\lambda g)|}{\|\lambda g\|} = \sup_{\lambda \neq 0} \frac{|\lambda|\sqrt{20}}{4|\lambda|} = \frac{\sqrt{5}}{2}.$$

(5 points)

Now apply the Hahn-Banach theorem to extend φ to the entire space X while preserving the norm.

(3 points)

Version 2. Almost identical: the only change is that $|4-2i|=\sqrt{20}$ has to be replaced by $|-2+2i|=\sqrt{8}$.